МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА И.Г. ПЕТРОВСКОГО» (БГУ)

УДК 548:537.611.45 № госрегистрации 01201367143 Инв.№ 215012670011

УТВЕРЖДАЮ Проректор по научно-исследовательской и работе и международным связям Т.А.Степченко 2015 г.

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТИЛЬСКОЙ РАБОТЕ

по теме:

НИЗКОТЕМПЕРАТУРНЫЕ ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ИКОСАЭДРИЧЕСКИХ БОРИ-ДАХ

(Грант Президента Российской Федерации № 14.124.13.7302-МК)

СОГЛАСОВАНО: Директор НИИ фундаментальных и прикладных исследований

<u>иния</u> (С.И. Михальченко/ (подпись, бата)

.В.Матовников/

(подпись, дата)

Руководитель темы к.ф.-м..н.

Брянск 2015

СПИСОК ОСНОВНЫХ ИСПОЛНИТЕЛЕЙ

Руководитель темы:

20 Матовников А. В. (раздел 1, 2, заключение) подпись, дата

кандидат физикоматематических наук, без ученого звания

Исполнители темы:

аспирант

0.01.15 Скробов С.А.

подпись, дата

(раздел 1, введение)

лаборант исследователь

20.61./5 Митрошенков Н. В. (раздел 2, заключение) подпись, дата

Попова Е.А. (раздел 1, введение) подпись, дата

лаборант

Нормоконтролер

÷,

10115 Люси А.А. Подвойская

ΡΕΦΕΡΑΤ

Отчет 48 с., 2 ч., 27 рис., 7 табл., 14 источников, 2 прил.

БОРИДЫ, ТЕПЛОЕМКОСТЬ, НАМАГНИЧЕННОСТЬ, ПАРАМЕТРЫ РЕШЕТКИ, НИЗКИЕ ТЕМПЕРАТУРЫ, РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ

В отчете представлены результаты исследований, выполненных по гранту Президента Российской Федерации № 14.124.13.7302-МК "низкотемпературные фазовые превращения в икосаэдрических боридах".

Цель работы - Систематическое комплексное исследование термодинамических свойств редкоземельных икосаэдрических боридов RB₅₀ в зависимости от их состава, температуры, положения редкоземельного металла в Периодической системе.

Методология работы.

Получение объектов исследования синтезом из элементов, боротермическим восстановлением металла из оксида в вакууме. Температурные зависимости теплоемкости будут экспериментально определены методом адиабатической вакуумной калориметрии. Рентгеновское исследование характеристик решетки будет выполнено методом Дебая-Шерера на порошке. Низкотемпературная намагниченность будет определена методом квантового магнетометра. Разделение величин термодинамических характеристик объектов исследования на решеточную, электронную и магнитную составляющие будет выполнено методом сравнения с немагнитным аналогом. Анализ фононных составляющих термодинамических характеристик будет проведен с привлечением моделей Дебая, Эйнштейна и методом моментов Монтролла.

Целью работы является установление влияния структуры и состава редкоземельных икосаэдричесих боридов на их теплофизические характеристики.

Для достижения поставленной цели решались следующие задачи:

1) разработка технологии синтеза, приготовление поликристаллических образцов боридов RB₅₀ (R – редкоземельный металл);

 экспериментальное определение температурных зависимостей теплоемкости икосаэдричесих редкоземельных боридов RB₅₀, в широкой низкотемпературной области 2 – 300 К;

 установление закономерностей зависимостей тепловых характеристик боридов, определяющих их термоэлектрическую добротность, от состава борида, температуры;

 выявление возможных фазовых превращений в магнитных, фононных подсистемах изучаемых РЗ-боридов, установление их природы, оценка возможности практического применения.

В ходе выполнения проекта исследования получены следующие результаты:

экспериментально определена теплоемкость боридов (2-300 К), выявлены аномалии теплоемкости икосаэдрических боридов в изучаемой области температур;

• разделены полные величины теплоемкости боридов на электронный, магнитный, решеточный вклады;

• проанализированы особенности поведения электронной, магнитной, решеточной подсистем;

 рассчитаны характеристические термодинамические функции икосаэдрических боридов в интервале температур 2-300К, а также их стандартные значения;

• определен характер фазовых превращений в боридах;

Оглавление

ВВЕДЕНИЕ	6
ОСНОВНАЯ ЧАСТЬ 1. Результаты работы на предыдущем этапе	9 9
1.1 Особенности физических, физико-химических свойств икосаэдр	оических
боридов RB ₆₆ , RB ₅₀	9
Кристаллическая структура RB ₅₀	9
1.2. Магнитные свойства RB ₅₀	10
1.3 Синтез и идентификация образцов RB50	
2. Теплоемкость RB ₅₀ в интервале 2-300К	
2.1 Аппаратура и методика измерения теплоемкости	
2.2 Экспериментальные температурные зависимости теплоемкости	боридов
RB ₅₀	
2.3 Составляющие низкотемпературной теплоемкости RB ₅₀ их анал	из 20
2.4 Характеристические термодинамические функции икосаэдричес	жих РЗ-
боридов	
2.5 Особенности фононных подсистем икосаэдрических боридов РЗ	Э по
данным калориметрического исследования	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ В	

ВВЕДЕНИЕ

Физические, физико-химические свойства боридов с высоким содержанием бора привлекают в последние годы все больший интерес, поскольку эти соединения являются магнитно-разбавленными f-электронными изоляторами, проявляющими намного более сильные магнитные взаимодействия, чем ожидалось.

Соединения RB₅₀ были первыми икосаэдрическими боридами с высоким содержанием бора, у которых были обнаружены магнитные фазовые превращения. Как было установлено, магнито-разбавленные соединения RB₅₀ являются изоляторами, вместе с тем они проявляют сильное магнитное взаимодействие. Установлено существование фазы RB₅₀ для Tb, Dy, Y, Ho, Er, Tm, Yb, Lu. Также установлено, что добавка кремния приводит к образованию псевдоизоструктурного семейства RB₄₄Si₂, позволяет также синтезировать боросилицидную фазу гадолиния.

Как было установлено в работе, структура соединений RB_{50} , как и $RB_{44}Si_2$, – орторомбическая, пространственная группа P_{bam} . Например, для TbB_{50} *a*= 16.609Å, *b*= 17.619Å, *c*= 9.477Å. Особенностью структуры является "лестничное" расположение атомов металла вдоль оси *c*, вдоль которой также располагаются "лестницы" икосаэдров B_{12} , элементарная ячейка RB_{50} содержит более 330 атомов. Места атомов бора и кремния (в борокарбидах) заняты частично. Бориды TbB_{50} , DyB_{50} , HoB_{50} , ErB_{50} испытывают магнитные превращения при температурах T_N = 17.5, 6.2, 7.5 и 4.6К соответственно. Превращение в YbB_{50} необычно. На температурной зависимости теплоёмкости оно проявляется размытым максимумом, свидетельствующим о нарушении ближней упорядоченности в системе атомных магнитных моментов ионов иттербия. Возможная причина этого – двухвалентное состояние ионов иттербия, или состояние с промежуточной валентностью.

При рассмотрении механизма магнитного взаимодействия в соединениях RB₅₀ (RB₄₄Si₂) пришлось отказаться от моделей РККИ и дипольного взаимодей-

ствиях, так как взаимодействие оказалось существенно более сильным, чем предполагают указанные модели. Из магнитных измерений следовало предположение, что икосаэдры B₁₂ являются переносчиками взаимодействия в боридах с высоким содержанием бора. Теоретического обоснования этому пока нет.

Насущная необходимость разработки новых термодинамических материалов, работающих при повышенных температурах, стимулировала исследования свойств высокоборных кластерных соединений редких земель, к которым относятся соединения RB₅₀. Обладая сильными ковалентными связями, бориды RB₅₀ характеризуются высокой твердостью, химической и термической стойкостью, устойчивостью к кислым средам, малой сжимаемостью. Для RB₅₀ характерна также низкая теплопроводность, что весьма важно для термоэлектрического материала.

Нерешенные проблемы:

- Для большинства соединений RB₅₀ (RB₄₄Si₂) отсутствуют данные о теплоемкости при низких температурах, что делает невозможным анализ процессов в магнитных подсистемах боридов в области фазовых превращений;
- Отсутствие экспериментальных данных о теплоемкости RB₅₀ не позволяет определить температурные зависимости характеристических термодинамических функций боридов (энтальпии, энтропии, энергии Гиббса), их стандартных значений, необходимых при различных физико-химических расчетах, в том числе расчетах режимов синтеза монокристаллов;
- В отсутствие данных о низкотемпературной теплоемкости не было возможности выявить влияние неупорядоченности размещения атомов в кристаллической решетке RB₅₀ на их термодинамические свойства, выявить возможный вклад Шоттки (если он есть) в теплоемкость;

Учитывая сказанное выше, цель и задачи проекта сводятся к следующим:

Целью работы является установление влияния структуры и состава редкоземельных икосаэдричесих боридов на их теплофизические характеристики.

Для достижения поставленной цели решались следующие задачи:

5) разработка технологии синтеза, приготовление поликристаллических образцов боридов RB₅₀ (R – редкоземельный металл);

 экспериментальное определение температурных зависимостей теплоемкости икосаэдричесих редкоземельных боридов RB₅₀, в широкой низкотемпературной области 2 – 300 К;

7) установление закономерностей зависимостей тепловых характеристик боридов, определяющих их термоэлектрическую добротность, от состава борида, температуры.

ОСНОВНАЯ ЧАСТЬ

1. Результаты работы на предыдущем этапе

1.1 Особенности физических, физико-химических свойств икосаэдрических боридов RB₆₆, RB₅₀ Кристаллическая структура RB₅₀

Структура соединений типа RB₅₀ была определена Higashi с соавт. из анализа монокристалла YB₄₁Si₁₂ который почти изоструктурен фазе RB₅₀, как отмечалось выше [18]. Структура для обеих фаз является орторомбической (пространственная группа Pbam) с похожими постоянных решетки, например, для TbB₅₀ и TbB₄₄Si₂, постоянные решетки: a = 16,609 A, b = 17,619 Å, c = 9,477 Å и a= 16,651 A, b = 17,661 Å, c = 9,500 Å соответственно [2]. Параметры решетки для соединений RB₅₀ и RB₄₄Si₂ приведены в таблицах 2 и 3 соответственно. Как и в других высших боридах, борные кластеры формируют основную решетку, атомаы металла занимают пустоты. Особенностью этой конструкции является то, что редкоземельные атомы образуют бесконечные лестницы в направлении длинной оси, вдоль которой также располагаются бесконечные цепи икосаэдров B_{12} . Это изображено на виде структуры, приведенном на рисунке 1.1. В пределах лестницы цепи имеют противоположные связи, с разделениями на 4,36 и 5,14 Å в случае TbB₄₄Si₂. Эти цепи отделены друг от друга в a-b плоскости на 3,96 Å, чтобы сформировать лестницу. Постоянная решетки вдоль оси с, по- видимому, отражает различие в размере редкоземельных ионов по сравнению с другими двумя осями [2].

Рис.1.1. Вид структуры RB₄₄Si₂ (RB₅₀ -тип) с небольшим наклоном с-оси. Малые кружки- атомы бора, средние круги - атомы кремния многогранника B₁₂Si₃, большие круги указывают редкоземельные атомы. Для ясности, нанесены только два из пяти конструктивно независимых икосаэдров B₁₂ вместе с B₁₂Si₃ многогранником [2].

Таблица 1.1	Параметры	решетки	орторомбических	соединений	RB_{50} (R =	= Tb,
Dy, Ho, Er, Y	[2].					

	а	b	С	Объем	Reference
	(Å)	(Å)	(Å)	(Å^3)	
TbB ₅₀	16.609(3)	17.619(3)	9.477(3)	2773.3	[2]
DyB_{50}	16.608(3)	17.623(2)	9.472(2)	2772.3	[2]
HoB_{50}	16.599(3)	17.609(2)	9.470(2)	2768.0	[2]
ErB_{50}	16.603(2)	17.611(2)	9.469(2)	2768.7	[2]
YB ₅₀	16.625(1)	17.620(1)	9.480(1)	2777.0	[2]

1.2. Магнитные свойства RB₅₀

Установлено, что соединение TbB₅₀ обладает первым магнитным переходом когда-либо наблюдавшимся в икосаэдрических боридах [2]. Температура перехода T_N ~ 17 K (рис. 1.7). При 2 K антиферромагнитная фаза испытывает метамагнитный переход при ~ 30 кГс. (Рис. 1.2 - 1.4). В результате детального сравнения с другими высшими боридми, тербия, такими как TbB₆₆ и TB₂₅, было сделано предположение, что уменьшение параметра решетки икосаэдра B₁₂ в структура RB50 было важным фактором в определении температуры магнитно-

го упорядочения. Это косвенно указывает на икосаэдры B₁₂ как на переносчика магнитных взаимодействий [2].

Рис.1.2. Намагниченность RB_{50} (R = Tb, Dy) в сильном магнитном поле [2].

Рис.1.3 Магнитная восприимчивость TbB₅₀. Стрелка указывает антиферромагнитный переход при $T_N = 17$ K [2].

Рис. 1.4. Кривая намагниченности TbB_{50} при 2 К. Метамагнитный переход происходит при критическом поле $H_c = 30$ кЭ [2].

	C_1	$\mu_{\rm elf}$	$\mu_{\rm free 10n}$	θ	$T_{\rm N}$
	(emu/R	$(\mu_{\rm B}/{\rm R} \text{ atom})$	eff	(K)	(K)
	mol)		$(\mu_{\rm B}/{\rm R} \text{ atom})$		
TbB ₅₀	-0.007	10.3	9.72	-15.3	17.5
DyB ₅₀	-0.013	11.9	10.65	-13.7	6.2
HoB ₅₀	-0.017	11.5	10.62	-13.7	7.5
ErB_{50}	-0.004	9.74	9.58	-5.4	4.6

Таблица 1.2. Магнитные свойства соединений RB_{50} (R = Tb, Dy, Ho, Er) [2]

1.3 Синтез и идентификация образцов RB₅₀

Синтез образца RB_{50} проведен боротермическим восстановлением лютеция из оксида в вакууме. Стехометрическая смесь порошков лютеция и оксида бора была спрессована в таблетку массой около 5г. Синтез проведен в вакуумной электропечи ЭСКВ-1, 2.2, 5/22 ШМ 3 по реакции $R_2O_3+103B \rightarrow 2RB_{50}+3BO$.

На первом этапе таблетка отжигалась в вакууме при температуре 1700° С в течение 3 часов. Затем таблетка тщательно растиралась, порошок несколько раз был просеян через сито с размером ячейки 100 мкм. При повторном кратковременном нагреве до 1000° С еще раз наблюдалось прохождение реакции, которое проявлялось временным снижением вакуума.

Синтезированные бориды были переплавлены в дуговой печи на медной водоохлаждаемой подложке с вольфрамовым нерасходуемым электродом в ат-

мосфере спектрально чистого аргона. Плавка была необходима для образования хорошей кристаллической структуры.

Рентгеноструктурный анализ проводился на установке ДРОН-7 в $Co-K_{\alpha}$ излучении. Полученные рентгенограммы сравнивались с базой данных международной картотеки ASTM (рис. 1-5 приложения 1). На рентгенограммах синтезированных образцов присутствуют рефлексы единственной фазы. Отражения посторонних фаз не выявлено.

Результаты химического анализа и параметры кристаллической решетки представлены в таблицах 1.3, 1.4.

Таблица 1.3. Результаты химического анализа поликристаллических RB₅₀.

	R, %	B, %	O, %
TmB_{50}	24.8	75.1	0.1
TbB ₅₀	24.4	75.05	0.1
DyB_{50}	25.6	74.3	0.1
HoB ₅₀	25.3	74.4	0.03
ErB_{50}	27.2	72.7	0.1
YbB ₅₀	26.2	73.2	0.3
LuB ₅₀	29.6	70.2	0.1

Таблица 1.4. Параметры кристаллической решетки синтезированных соединений RB₅₀. Параметры решетки

Соединение	TbB_{50}	DyB ₅₀	HoB_{50}	ErB_{50}	YbB ₅₀	LuB_{50}
a, Å	16.5982		16.6083	16.5342	16.5739	16.5300
b, Å	17.6027		17.6136	17.5887	17.5877	17.5437
c, Å	9.4661		9.4594	9.4246	9.4551	9.4209

Таким образом были синтезированы следующие бориды РЗЭ: TbB₅₀, DyB₅₀, HoB₅₀, ErB₅₀, YbB₅₀, LuB₅₀.

2. Теплоемкость RB₅₀ в интервале 2-300К.

2.1 Аппаратура и методика измерения теплоемкости.

Измерение теплоемкости осуществлялась на автоматизированном калориметре фирмы ООО «Термакс», реализующей классический адиабатический метод определения теплоемкости [3-6]. В состав установки входит универсальный многоцелевой криостат БКТ-21, ячейка для измерения теплоемкости, система сбора и обработки данных АК-9 с соответствующим программным обеспечением.

Криостат представляет собой трубку длиной 127 см и внешним диаметром 44 мм. Его можно погружать в стандартный транспортный гелиевый сосуд с 2" горловиной. Рабочая область (диаметром 26 мм и длиной 160 мм) расположена в нижней части криостата. В верхней части криостата расположены вакуумные вентили.

Сменные ячейки устанавливаются внутри медной ширмы и поддерживается железной трубой. На верхнем конце трубы имеется соединитель, который соединяет цепи термометров и нагревателей и поддерживает весь блок в ширме. Блок прикреплен к ширме соединительной гайкой. Ширма с блоком прикрепляется к камере испарения тремя винтами. Цепь нагревателя ширмы подсоединена специальным соединителем на внешней поверхности ширмы. Майларовый слой обхватывает ширму вокруг для уменьшения теплообмена излучением.

Рис. 2.1. Измерительная ячейка низкотемпературного калориметра фирмы ООО «Термакс». 1 - вакуумная рубашка, 2 – экран, 3 - RhFe термометр, 4 - адиабатическая ширма,
5 - контейнер образца, 6 - крышка экрана, 7 – сорбер, 8 - тепловые перехваты, 9 - термопара ширмы, 9 - термопара калориметра, 10 – нагреватель, 11 – сетка.

Ячейка для измерения теплоемкости подключается к криостату БКТ-21 Образец помещается внутри титанового контейнера (рис. 2.1), который плотно вставлен в тонкую цилиндрическую нагревательную гильзу. Нагреватель изготовлен из 0.06 мм манганиновой проволоки, намотанной на гильзу и покрытой одним слоем 0.03 мм медной фольги. 11 спаев термопары медь-железо/хромель приклеены к этой фольге. 12 спаев находятся на внутренней поверхности медной адиабатической ширмы. Эта термопара является главной, так же имеется 3-4 спайная термопара между средней и верхней частями ширмы, т.е. градиентная термопара. Температурные контакты для электрических проводов расположены на верхней части ширмы. Когда разность температур между ширмой и охлаждающей ванной велика, эти провода (и труба, которая держит ширму) вызывают значительный температурный градиент по длине ширмы. Этот градиент является источником дополнительной систематической погрешности, поэтому он держится на нулевом уровне с помощью данной градиентной термопары и дополнительным градиентным нагревателем, который расположен под термическими контактами ширмы.

Температура ширмы измеряется железо-родиевым термометром. Во время измерений теплоемкости температура ширмы поддерживается равной температуре калориметра (нагреватель+контейнер) с точностью до нескольких десятых милликельвин.

Калориметр подвешен внутри ширмы на нейлоновых нитях. Для предотвращения их обрыва калориметр во время перезарядки фиксируется арретиром. Нагреватель ширмы - манганиновая проволока, вклеенная в пазы внешней поверхности ширмы. Майларовая пленка обхвачена вокруг ширмы.

Провода от ширмы проходят к головке криостата через термические контакты на медном разъеме и через ловушку излучения. Они уплотнены в головке между двумя резиновыми прокладками и затем припаяны к разъему RS50.

Блок калориметра, находящийся в вакууме и окруженный ширмой при температуре ширмы, близкой к температуре блока, находится в адиабатических условиях. Таким образом, дрейф температуры блока очень мал, что является условием для сравнения термометров с высокой точностью. Температуры блока и ширмы контролируются автоматическими температурными контроллерами системы АК 9.02. Эта система также устанавливает температуры шаг за шагом, покрывая весь рабочий диапазон. Работа системы сбора данных осуществляется специализированной компьютерной программой, написанной в среде Turbo Pascal 7.0. Измерения проводились в транспортных гелиевом или азотном дьюарах.

Описанная конструкция измерительной установки позволяет производить измерения со следующими характеристиками:

- температурный диапазон: 1,8-350 К
- температурная стабильность: 0,2 мК вблизи 0,6 К, 2 мК вблизи 350 К
- средняя скорость испарения жидкого гелия: 2,5 л/день

предел допускаемого значения относительной погрешности измерения в температурных диапазонах:

- о **1.8 4,8** К: 3%
- 4.8 40 K: 2%;
- о 40 **-** 350 К: 0.5%.
- объем образца: менее 1 куб. см.

2.2 Экспериментальные температурные зависимости теплоемкости боридов RB₅₀

Экспериментальные значения удельной теплоемкости исследуемых образцов RB₅₀ в диапазоне температур от 2 до 300 К измерены абсолютным адиабатическим методом с периодическим нагревом на автоматизированном калориметре фирмы «Термакс». Результаты измерений представлены в таблицах 1 – 6 приложения 2.

На рис. 2.1-2.6 представлены графики, иллюстрирующие температурные зависимости молярных теплоемкостей изучаемых боридов РЗЭ.

Рис. 2.1. Теплоемкость C_p(T) борида лютеция ErB₅₀ в области 2-300 К.

Рис. 2.2. Теплоемкость $C_p(T)$ борида лютеция HoB₅₀ в области 2-300 К.

Рис. 2.3. Теплоемкость $C_p(T)$ борида лютеция TbB₅₀ в области 2-300 К.

Рис. 2.4. Теплоемкость $C_p(T)$ борида лютеция TmB_{50} в области 2-300 К.

Рис. 2.5. Теплоемкость $C_p(T)$ борида лютеция YbB₅₀ в области 2-300 К.

Рис. 2.6. Теплоемкость C_p(T) борида лютеция LuB₅₀ в области 2-300 К.

2.3 Составляющие низкотемпературной теплоемкости RB₅₀ их анализ.

Особенности теплоемкости исследуемых образцов отчетливо проявляются на температурной зависимости характеристической температуры, рассчитанной по дебаевской функции теплоемкости в предположении приблизительного равенства изобарной $C_p(T)$ и изохорной $C_v(T)$ теплоемкостей борида [77]. Анализ составляющих экспериментальных зависимостей низкотемпературной теплоемкости боридов RB_{50} удобнее проводить в координатах $C_p/T^3(T^2)$ (рис.2.7), в которых дебаевский вклад в $C_p(T)$ проявляется в виде горизонтального участка при низких температурах.

Рис. 2.7. Составляющие теплоемкости LuB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – сумма вкладов; 3 - дебаевская составляющая C_D(T); 4 – эйнштейновская составляющая C_E (T).

Анализ температурной зависимости RB₅₀, был произведен методом соответствия, в качестве образца сравнения был использован немагнитный аналог LuB₅₀ puc.2.8-2.12.

Рис. 2.8. Составляющие теплоемкости ErB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – LuB₅₀; 3 - магнитная составляющая.

Рис. 2.9. Составляющие теплоемкости HoB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – LuB₅₀; 3 - магнитная составляющая.

Рис. 2.10. Составляющие теплоемкости TbB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – LuB₅₀; 3 - магнитная составляющая.

Рис. 2.11. Составляющие теплоемкости TmB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – LuB₅₀; 3 - магнитная составляющая.

Рис. 2.12. Составляющие теплоемкости YbB₅₀. 1– экспериментальные величины теплоемкости на интервалах 2 - 300 К; 2 – LuB₅₀; 3 - магнитная составляющая.

2.4 Характеристические термодинамические функции икосаэдрических РЗ-боридов

Температурные изменения энтальпии $\Delta H(T) = \int_{2}^{T} C_{p}(T) dT$, энтропии $\Delta S(T) = \int_{2}^{T} \frac{C_{p}(T)}{T} dT$, свободной энергии Гиббса $\Delta G(T) = \Delta H(T) - T\Delta S(T)$ изучаемых боридов рассчитаны интегрированием сглаженных зависимостей $C_{p}(T), \frac{C_{p}}{T}(T)$. Сглаженные молярные величины изобарной теплоемкости, изменений энтальпии, энтропии, свободной энергии Гиббса приведены на рис. 2.13 - 2.17.

Рис. 2.13. Температурные изменения энтропии ΔS (Дж/моль/К) (1), энтальпии ΔH (Дж/моль) (2), и энергии Гиббса ΔG (Дж/моль) (3) борида HoB₅₀.

Рис. 2.14. Температурные изменения энтропии ΔS (Дж/моль/К) (1), энтальпии ΔH (Дж/моль) (2), и энергии Гиббса ΔG (Дж/моль) (3) борида TbB₅₀.

Рис. 2.15. Температурные изменения энтропии ΔS (Дж/моль/К) (1), энтальпии ΔH (Дж/моль) (2), и энергии Гиббса ΔG (Дж/моль) (3) борида TmB₅₀.

Рис. 2.16. Температурные изменения энтропии ΔS (Дж/моль/К) (1), энтальпии ΔH (Дж/моль) (2), и энергии Гиббса ΔG (Дж/моль) (3) борида YbB₅₀.

Рис. 2.17. Температурные изменения энтропии ΔS (Дж/моль/К) (1), энтальпии ΔH (Дж/моль) (2), и энергии Гиббса ΔG (Дж/моль) (3) борида ErB₅₀.

В таблице 2.1 приведены значения молярной теплоемкости и характеристических термодинамических функций изучаемых РЗ - боридов при T = 298,15 K.

Таблица 2.1. Н	Зеличины молярной	теплоемкости C _p ,	изменений	энтальпии
Δ H, энтропии Δ S, эн	нергии Гиббса ΔG бо	ридов RB ₆₆ при Т	= 298,15 К.	

			00	/
	С _р , Дж/моль/К	ΔН, Дж/моль	Δ S, Дж/моль/К	ΔG , Дж/моль
ErB ₅₀	538.6	59720	312.4	-33420
TbB ₅₀	580.2	83440	313.1	-35830
TmB ₅₀	620.7	91180	365.2	-39580
HoB ₅₀	581.4	63830	328.8	-34760
YbB ₅₀	580.2	82440	331.6	-35120
LuB_{50}	581.3	85230	330.4	-34280

2.5 Особенности фононных подсистем икосаэдрических боридов РЗЭ по данным калориметрического исследования

Для определения особенностей фононной теплоемкости икосаэдрических боридов был применен метод моментов Монтролла, который позволяет на основе знания температурной зависимости удельной теплоемкости при постоянном объеме определить следующие параметры фононного спектра:

 моменты фононного спектра, определяющие характеристики динамики решетки;

– характеристическую температуру Дебая на бесконечности;

- энергию нулевых колебаний атомов;
- среднегеометрическую частоту фононного спектра;
- характеристическую температуру $\Theta_{\infty}^{(s)}$.

Как отмечалось ранее, в области повышенных температур величины молярных теплоемкостей боридов RB₅₀ практически совпадают. Это обусловлено, очевидно, колебаниями подрешетки бора, одинаковой для этих соединений. Поэтому анализ фононной подсистемы икосаэдрических боридов проводился только для борида лютеция LuB₅₀.

По значениям $\Theta_D(T)$ могут быть рассчитаны n-е моменты фононного спектра, определяющие характеристики динамики решетки. Как известно [8-9], n-е моменты определяются следующим образом:

$$\mu_n = \frac{1}{6N} \int_0^\infty \nu^n G(\nu) d\nu,$$
$$\mu_n = \left(\frac{h}{k}\right)^n \mu_n$$

где N – число Авогадро, ν – частота, $G(\nu)$ – функция распределения частот, h – постоянная Планка, k – постоянная Больцмана. Для того чтобы сравнивать моменты разного порядка, обычно используют функцию моментов $\nu_D(n)$, являющуюся максимальной частотой дебаевского распределения с тем же самым пм моментом, как у реального кристалла

$$v_D(n) = \left\{\frac{1}{3}(n+3)\mu_n\right\}^{\frac{1}{n}}.$$

Для вычисления положительных моментов можно воспользоваться выражением

$$\Theta_D^2 = \left(\Theta_D^{\infty}\right)^2 \left\{ 1 - A \left(\frac{\Theta_D^{\infty}}{T}\right)^2 + B \left(\frac{\Theta_D^{\infty}}{T}\right)^4 - \dots \right\},$$

где

$$\Theta_D^{\alpha} = \frac{h}{k} \left(\frac{5\mu_2}{3} \right)^{\frac{1}{3}},$$

$$A = \frac{3}{100} \left(\frac{\mu_4}{\mu_2^2} - \frac{25}{21} \right),$$

$$B = \frac{1}{1400} \left\{ \left(\frac{\mu_6}{\mu_2^3} - \frac{125}{81} \right) - 100A \right\}.$$

Процедура вычисления положительных моментов состоит в следующем. Строится график зависимости $\Theta_D^2(T)$ от $1/T^2$ (рис. 18). Экстраполяция построенной зависимости к $1/T^2 = 0$ дает Θ_D^∞ или, что то же самое, μ_2 .

Рис. 2.18. Определение температуры Θ_D^{∞} борида лютеция.

Рис. 2.19. Зависимость $m(\Theta_D^{\infty}/T)$ для борида лютеция.

Моменты μ_4, μ_6 рассчитывались через коэффициенты A и B, которые определялись графически построением зависимости $m = \left[1 - \left(\Theta_D (V_0) / \Theta_D^{\infty}\right)^2\right] / \left(\Theta_D^{\infty} / T\right)^2$ от $\left(\Theta_D^{\infty} / T\right)^2$. Значение *m* при $\left(\Theta_D^{\infty} / T\right)^2 = 0$ дает A, а наклон кривой дает B (рис. 2.19).

В качестве проверки положительных моментов может быть использовано выражение, полученное Тирингом (рис. 2.20) [10]:

$$C_{V} = 3R(1 - \frac{B_{2}}{2!}\frac{\mu_{2}^{*}}{T^{2}} + \frac{3B_{4}}{4!}\frac{\mu_{4}^{*}}{T^{4}} - \frac{5B_{6}}{6!}\frac{\mu_{6}^{*}}{T^{6}} + \dots).$$

Рис. 2.20. Приближение теплоемкости LuB₅₀ при высоких температурах моментами фононного спектра. 1 – одним моментом, 2 – двумя моментами, 3- тремя моментами.

Отрицательные моменты $\mu_{-2,5}, \mu_{-2}, \mu_{-1,5}, \mu_{-1}$ и $\mu_{-0,5}$ могут быть вычислены по формуле

$$\frac{1}{3Nk}\int_{0}^{\tau}\frac{C_{\nu}(V_{0})}{T^{n}}dT = \Gamma(n+1)\xi(n)\mu_{1-n}^{*} - \frac{1}{n-1}\frac{1}{\tau^{n-1}} + \sum_{s=1}^{\infty}(-1)^{n+1}\frac{B_{2n}}{(2s)!}\frac{2s-1}{2s+n-1}\frac{\mu_{2s}^{*}}{\tau^{2s+n-1}},$$

где $\Gamma(n+1) = \int_{0}^{\infty} e^{-x} x^{n}$ - гамма функция, $\xi(n) = \sum_{k=1}^{\infty} \frac{1}{k^{n}}$ - римановская дзета-

функция, B_{2s} - числа Бернулли ($B_2 = \frac{1}{6}, B_4 = \frac{1}{30}, B_6 = \frac{1}{42}$), а 1 < *n* < 4. Верхний предел интегрирования τ - наименьшая температура, при которой сходимость ряда все еще достаточно быстрая.

Момент $v_D(0)$ может быть выражен из среднегеометрической частоты v_q спектра, которая вычисляется из высокотемпературного разложения для энтропии с использованием следующего соотношения

$$e^{\frac{1}{3}}hv_q = hv_D(0) = k\Theta_{\infty}^{(S)},$$

где $\Theta_{\infty}^{(s)}$ соответствует энтропии при высоких температурах. Вся процедура нахождения v_q аналогична нахождению Θ_D^{∞} . График экспоненты $\exp\left(\frac{S-3R}{3R}\right)$ от *T* имеет предельный наклон, равный $\frac{hv_q}{k}$ (рис. 2.21).

Рис. 2.21. Определение среднеге
ометрической частоты $\nu_{\scriptscriptstyle q}$

Таблица 2.2. Среднегеометрическая частота ν_q , энергия нулевых колебаний E_z , характеристические температуры Θ_D^{∞} , $\Theta_{\infty}^{(s)}$ борида LuB₅₀.

\square_{D}^{∞}, K	\Box^{S}_{D}, K	Е _z , кДж/моль	v_q, c^{-1}
1330	1283	118.5	$1.9 \cdot 10^{13}$

Таблица 2.3. Моменты частотного спектра борида лютеция LuB₅₀.

$ \Box^{-2.5}, \\ 10^{-33} c^{2.5} $	$\Box^{-2},$ 10 ⁻²⁷ c ²	$\Box^{-1.5},$ $10^{-20} c^{1.5}$	$\Box^{-1},$ 10 ⁻¹⁴ c ^{0.5}	$\Box^{-0.5},$ $10^{-7} c^{2.5}$	\Box^{1} , 10 ⁻¹³ c ⁻¹	\Box^2 , $10^{-26} c^{-2}$	\Box^4 , 10 ⁻⁵³ c ⁻⁴	$10^{-80} c^{-6}$
3.98	7.13	1.85	6.11	2.35	2.05	4.61	2.64	1.67

Рис. 2.22. Зависимость моментов частотного спектра LuB₅₀ от порядкового номера момента.

Зависимость $v_D(n)$ должна быть константой для дебаевского спектра и является удобной величиной для сравнения $v_D(n)$, рассчитанной из теоретической модели взаимодействия атомов в решетке, с полученной из эксперимента.

ЗАКЛЮЧЕНИЕ

В результате выполнения проекта получены следующие результаты:

экспериментально определена теплоемкость боридов (2-300 К), выявле ны аномалии теплоемкости икосаэдрических боридов в изучаемой области тем ператур;

- разделены полные величины теплоемкости боридов на электронный, магнитный, решеточный вклады;

- проанализированы особенности поведения электронной, магнитной, решеточной подсистем;

 определены характеристики взаимодействия в фононной, магнонной подсистемах (дебаевские и эйнштейновские характеристические температуры, параметры обменного взаимодействия);

- установлены закономерности изменений с температурой и составом параметров электронного, решеточного, магнитного вкладов в теплоемкость редкоземельных боридов;

- проведен анализ аномалий теплоемкости с привлечением приближения мягких атомных потенциалов, двухуровневых систем;

 рассчитаны характеристические термодинамические функции икосаэдрических боридов в интервале температур 2-300К, а также их стандартные значения.

В результате анализа экспериментальных зависимостей теплоемкости икосаэдрических боридов, RB50 установлено:

-зависимости Cp(T) боридов RB50 носят сложный характер, на различных участках изученного температурного интервала разные вклады в полную теплоемкость боридов RB50 являются преобладающими;

- теплоемкость исследуемых боридов может быть аппроксимирована суммой следующих вкладов: регулярная решеточная составляющая, стеклоподобный вклад, ядерная теплоемкость и магнитный вклад. Интегрированием сглаженных зависимостей C(T), C/T(T) рассчитаны температурные изменения

энтальпии, энтропии и свободной энергии Гиббса; установлено, что при низких температурах определяющее влияние на величины термодинамических характеристик имеют процессы в магнитной подсистеме боридов; при повышенных температурах возрастает роль массы РЗ – иона. Рассчитанные моменты фононных спектров позволили определить характеристические температуры Дебая и теплоемкость боридов RB50 при высоких температурах, энергию нулевых колебаний атомов, среднегеометрическую частоту фононного спектра. При анализе термодинамических характеристик изучаемых боридов РЗЭ, обращает на себя внимание явно выраженные отклонения величин H(n), S(n), G(n) боридов RB50, содержащих парамагнитные ионы R3+ (Gd3+, Tb3+, Dy3+, Ho3+), от аддитивного положения. При низких температурах эти отклонения наблюдаются в сторону меньших по абсолютной по величине значений. При повышении температуры ситуация меняется на противоположную: значения H(n), S(n), G(n)смещены в сторону больших абсолютных величин. При низких температурах (2 – 20 К) основными вкладами в термодинамические характеристики являются магнитный вклад и, возможно, стеклоподобная составляющая. Если предположить, что величины стеклоподобных составляющих боридов RB50 в этом температурном диапазоне близки, то величины H, S, G, будут тем больше, чем выше температура магнитного превращения. При повышенных температурах все большее влияние на величины термодинамических характеристик боридов RB50 оказывает, очевидно, возрастающая с порядковым номером масса иона R3+. В ряду величин температур Дебая, подсчитанных по данным калориметрического исследования, наблюдается тенденция к снижению с ростом порядкового номера металла. Это может быть обусловлено преобладающим влиянием на динамику решетки возрастающей массы иона R3+ по сравнению с явлением лантаноидного сжатия. Остаются нерешенными некоторые вопросы, связанные с магнетизмом боридов RB50, в том числе механизм магнитного взаимодействия (нет электронов проводимости для РККИ – взаимодействия, расстояние между магнитными ионами слишком велико для модели Гейзенберга). Возможно, взаимодействие происходит через цепочки икосаэдров B12.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Oliver D.W., Brower G.D. Growth of single crystal YB₆₆ from the melt // Journal of Crystal Growth. 1971. V. 11. № 3. P. 185–190.
- Mori T. Higher Borides // Handbook on the Physics and Chemistry of Rareearths / ed. K.A. Gschneidner, J.-C. Bunzl, V. Pecharsky. Amsterdam, 2008. P. 105–173.
- Матовников А.В. Термодинамические свойства диборидов редкоземельных элементов. Дисс. На соискание ученой степени канд. Ф.-м. наук. Брянск, 2008. – 174 с.
- Новиков В.В. Температурная зависимость теплоемкости твердых растворов систем арсенид галлия – фосфид индия – арсенид индия в области 5 -300 К. Дисс. На соискание ученой степени канд. Ф.-м. наук. Брянск, 1984. – 202 с.
- Новиков В.В. Термодинамические свойства гексаборидов редкоземельных элементов. Дисс. На соискание ученой степени докт. Ф.-м. наук. Брянск, 2000. – 284 с.
- 6. Новиков В.В. и др. Низкотемпературная теплоемкость тетраборидов редкоземельных элементов // Физика твердого тела. 2011. Т. 53. № 9. С. 1743.
- Vannette M.D. et al. Precise measurements of radio-frequency magnetic susceptibility in ferromagnetic and antiferromagnetic materials // Journal of Magnetism and Magnetic Materials. 2008. V. 320. № 3–4. P. 354–363.
- Barron T.H.K., Berg W.T., Morrison J.A. The Thermal Properties of Alkali Halide Crystals. II. Analysis of Experimental Results // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1957. V. 242. № 1231. P. 478–492.
- Русаков А.П., Векилов Ю.Х., Кадышевич А.Е. Удельная теплоемкость СdТе и HgTe и свойства их колебательного частотного спектра // Физика твердого тела. 1970. Т. 12. № 11.

- Flubacher P., Leadbetter A.J., Morrison J.A. The heat capacity of pure sllicon and germanium and properties of their vibrational frequency spectra // Philosophical Magazine. 1959. V. 4. № 39. P. 273–294.
- Montroll E.W., Peaslee D.C. Frequency Spectrum of Crystalline Solids. III. Body-Centered Cubic Lattices // The Journal of Chemical Physics. 1944. V. 12. № 3. P. 98–106.
- 12. Novikov V.V. et al. Thermal and magnetic properties of DyB₆₂ at low temperatures // Physica B: Condensed Matter. 2011. V. 406. № 13. P. 2642–2645.
- Голикова О.А. Квазиаормфные полупроводники // Успехи физических наук. 1989. Т. 32. № 4. С. 665.
- 14. Kim H. et al. Magnetic Properties of RB₆₆ (R = Gd, Tb, Ho, Er, and Lu) // Journal of Superconductivity and Novel Magnetism. 2012. V. 25. № 7. P. 2371–2375.

ПРИЛОЖЕНИЕ А

Refinement of HOB50.X_Y 10/24/2012 3:57:37 PM

HoB50

lattice	a:	16.6083	16.6163
	b:	17.6136	17.6203
	c:	9.4594	9.4576
zero shi	ft :	-0.0026	-0.0125

Refinement	of ERB52.X	Y	12/12/2012	2 11:0	05:29 AM

Er	B	5	0

scaling		•	0.8592	0.8537
lattice	a	•	16.5342	16.5416
	b :		17.5887	17.5867
	c :		9.4246	9.4281
Tono shif	2		0 1620	0 1629
Zero shii	£		0.1050	0.1030

Refinement	of YbB50.X	Y	11/26/2012	6:36:31	PM

YbB50				
sealing		2.7461	2.7629	
lattice	a :	16.5739	16.5741	
	b :	17.5877	17.5880	
	c :	9.4551	9.4550	
zero shif	it :	0.0971	0.0970	

Refinement of LUB50.X_Y 04.10.2012 15:27:18

lattice	a :	16,5335	16,5300	
	b :	17,5422	17,5437	
	c :	9,4215	9,4209	
zero shi	ft :	0,1110	0,1127	

ПРИЛОЖЕНИЕ В

T,K	C _p	T,K	C _p	T,K	C _p
2,12	1,9360	40,20	14,601	169,88	216,01
2,50	2,1787	42,73	16,238	174,45	228,39
3,13	2,3631	45,27	18,322	179,03	240,07
3,84	2,1787	47,82	19,470	183,60	252,02
4,61	1,9239	50,39	21,105	188,18	264,69
5,36	1,7721	52,97	22,903	192,77	276,19
6,08	1,7248	55,56	24,927	197,37	287,64
6,76	1,8237	58,16	27,023	201,98	299,75
7,43	1,9555	60,77	29,227	206,59	311,38
8,11	2,1392	63,38	31,085	211,17	320,52
8,79	2,3326	66,01	33,079	215,77	332,52
9,47	2,6086	68,64	36,002	220,39	341,56
10,17	2,7760	71,32	38,007	225,02	353,52
10,87	3,0412	73,98	40,201	229,62	365,52
11,57	3,2882	76,63	43,066	234,21	377,62
12,28	3,5663	79,28	45,812	238,82	388,67
13,03	3,8283	81,93	49,273	243,43	399,25
13,75	4,0234	84,58	51,934	248,01	410,86
14,50	4,2623	86,70	54,534	252,24	421,90
15,22	4,4620	87,23	55,146	252,59	421,35
15,97	4,6711	89,90	58,245	257,30	431,54
16,72	4,8475	90,35	58,534	261,82	442,77
17,48	5,1123	93,43	62,827	266,31	452,44
18,23	5,2754	97,84	68,820	270,74	464,04
19,32	5,6923	102,26	75,342	275,15	476,22
20,91	6,2224	106,69	82,634	279,54	484,52
22,59	6,7134	111,13	90,196	283,96	494,09
24,27	7,3923	115,59	98,427	288,39	506,60
25,96	8,3425	120,06	107,01	292,81	517,98
27,65	8,7680	124,53	115,00	297,25	528,23
29,34	9,4121	129,05	124,65	301,69	540,43
30,17	9,8964	133,56	133,48		
31,44	10,487	138,07	142,53		
32,70	11,121	142,59	152,58		
33,95	11,546	147,12	162,01		
35,20	12,074	151,66	171,95		
37,69	13,351	156,21	182,76		

Таблица 1. Экспериментальные значения молярной теплоемкости борида эрбия ErB₅₀ C_p(T),Дж/моль/К.

T,K	Cp	T,K	Cp	T,K	Cp
2,22	1,3854	43,41	17,448	161,41	207,19
2,31	1,1144	45,94	19,361	165,96	219,78
2,86	0,9615	48,49	20,859	170,53	231,47
2,87	0,9253	51,07	22,397	175,13	243,68
3,65	0,6924	53,65	24,488	179,67	255,88
4,41	0,6161	56,24	26,477	184,25	268,52
5,11	0,6985	58,83	28,439	188,84	281,34
5,77	0,8548	61,44	30,372	193,43	293,73
6,44	1,0875	64,05	32,457	198,02	306,55
7,12	1,3938	66,67	35,167	202,61	318,90
7,79	1,7116	69,29	37,245	207,21	331,90
8,48	2,0625	71,93	39,720	211,78	343,53
9,17	2,4398	74,56	42,148	216,38	354,53
9,87	2,7204	77,21	45,610	221,12	369,53
10,58	2,9302	79,83	48,955	225,08	378,67
11,32	3,2396	82,51	52,757	225,63	381,34
12,02	3,5174	85,16	55,334	230,52	389,34
12,75	3,8093	85,63	56,445	235,11	402,24
13,51	3,9453	87,82	59,534	239,66	415,89
14,27	4,1235	89,17	60,453	244,22	427,78
15,03	4,3783	90,48	61,453	248,79	437,39
15,79	4,4734	92,78	64,945	253,34	447,51
16,51	4,7939	94,01	67,658	257,87	458,27
17,32	4,8453	98,42	74,306	262,37	469,42
18,09	5,1634	102,85	81,630	266,83	480,77
19,19	5,5636	107,28	89,272	271,22	492,56
20,62	6,6346	111,73	97,693	275,58	504,14
22,23	6,7245	116,19	106,04	279,92	515,53
23,91	7,2963	120,66	114,98	284,32	526,26
25,61	8,0963	125,15	123,88	288,71	539,55
27,32	8,8853	129,64	133,37	293,11	551,45
29,01	9,7943	134,14	142,84		
29,31	9,7990	138,66	152,62		
31,82	11,016	143,18	162,98		
34,30	12,213	147,74	174,38		
36,79	13,563	152,31	184,19		
40,11	15,112	156,85	196,48		

Таблица 2. Экспериментальные значения молярной теплоемкости борида гольмия HoB₅₀ C_p(T),Дж/моль/К.

T,K	Cp	T,K	Cp	T,K	Cp
1	2	3	4	5	6
2,01	0,0845	50,95	21,275	108,70	194,44
4,15	0,1334	59,55	23,144	1/3,2/	205,16
5,83	0,2133	62,16	25,523	1/7,84	215,36
6,71	0,2553	64,79	27,035	182,42	227,76
7,48	0,2714	67,41	29,325	187,12	238,45
8,25	0,3095	70,06	31,585	191,59	249,72
9,02	0,3462	72,70	33,565	196,18	260,57
9,81	0,3834	75,39	36,194	200,78	270,74
10,59	0,4152	78,05	38,964	205,37	280,67
11,38	0,4575	80,95	41,614	209,98	293,15
12,16	0,5052	83,36	44,242	214,58	304,27
12,93	0,5654	86,02	47,293	218,47	313,65
13,79	0,5853	88,67	50,176	219,17	316,47
14,51	0,6763	92,20	54,535	223,76	326,74
15,32	0,7072	96,61	60,334	224,12	327,93
16,14	0,8033	101,03	67,634	228,32	337,87
16,94	0,8853	104,52	72,674	228,71	339,77
17,74	0,9682	105,53	73,563	233,30	350,64
18,94	1,1745	109,90	80,464	237,89	360,74
20,41	1,2823	110,68	82,364	242,22	370,74
22,06	1,6154	114,36	88,663	247,04	381,37
23,75	2,7453	115,11	89,843	251,60	391,95
25,44	2,5453	118,75	95,865	256,15	403,16
27,14	2,8823	119,55	97,253	260,68	413,65
28,82	3,4757	123,17	103,22	265,17	424,46
30,51	4,4129	123,99	105,26	269,65	433,64
32,59	5,2553	127,81	112,15	274,17	444,24
33,42	5,6832	128,46	113,65	277,19	451,97
35,08	6,5536	132,31	120,35	282,28	464,75
36,52	7,3463	132,93	121,45	286,75	474,56
39,02	8,8146	136,86	129,23	291,19	487,36
41,54	10,342	137,41	130,53	295,62	500,75
44,07	12,125	141,39	139,27	300,03	512,73
46,62	13,646	141,94	140,87		· · · · ·
49,35	15,765	145,92	147,76		
51,76	17,634	150,47	155,59		
54,29	19,412	155,03	165.53		

Таблица 3. Экспериментальные значения молярной теплоемкости борида лютеция LuB50 Cp(T),Дж/моль/К.

T,K	Cp	T,K	Cp	T,K	Cp
2,22	1,3854	43,40	17,448	161,40	207,19
2,30	1,1144	45,94	19,361	165,96	219,78
2,86	0,9615	48,49	20,859	170,53	231,47
2,87	0,9253	51,07	22,397	175,10	243,68
3,65	0,6924	53,65	24,488	179,67	255,88
4,41	0,6161	56,24	26,477	184,25	268,52
5,10	0,6985	58,83	28,439	188,84	281,34
5,77	0,8548	61,44	30,372	193,43	293,73
6,44	1,0875	64,05	32,457	198,02	306,55
7,12	1,3938	66,67	35,167	202,61	318,90
7,79	1,7116	69,29	37,201	207,20	331,90
8,48	2,0625	71,93	39,720	211,78	343,23
9,17	2,4398	74,56	42,148	216,38	354,15
9,87	2,7204	77,20	45,610	221,00	369,58
10,58	2,9300	79,83	48,950	225,08	378,67
11,30	3,2396	82,51	52,757	225,63	381,13
12,02	3,5170	85,16	55,301	230,52	389,00
12,75	3,8093	85,63	56,401	235,11	402,00
13,51	3,9406	87,82	59,003	239,66	415,89
14,27	4,1002	89,17	60,404	244,22	427,78
15,03	4,3783	90,48	61,402	248,79	437,39
15,79	4,4700	92,78	64,901	253,34	447,51
16,56	4,7939	94,01	67,658	257,87	458,27
17,32	4,8403	98,42	74,306	262,37	469,42
18,09	5,1600	102,85	81,630	266,83	480,77
19,19	5,5636	107,28	89,272	271,22	492,56
20,62	6,0021	111,73	97,693	275,58	504,14
22,23	6,7002	116,19	106,04	279,92	515,10
23,91	7,2903	120,66	114,98	284,30	526,26
25,61	8,0901	125,15	123,88	288,71	539,55
27,30	8,8120	129,64	133,37	293,10	551,00
29,01	9,7209	134,14	142,84		
29,31	9,7990	138,66	152,62		
31,82	11,011	143,18	162,98		
34,30	12,213	147,74	174,38		
36,79	13,561	152,30	184,19		
40,11	15,110	156,85	196,48		

Таблица 4. Экспериментальные значения молярной теплоемкости борида тербия TbB₅₀ C_p(T),Дж/моль/К.

111230 $Cp(1)$	γ ₄ γιν μιουμί τς.				
T,K	Cp	T,K	C _p	T,K	Cp
2,20	3,5120	30,36	10,455	133,02	152,19
2,73	3,5325	31,61	11,175	137,53	162,18
3,50	3,2225	32,12	11,452	142,06	172,87
4,32	2,8358	33,15	12,242	146,59	182,43
5,13	2,5936	34,10	12,852	151,14	194,08
5,90	2,4875	34,55	13,634	155,71	207,69
6,66	2,5129	36,60	14,353	160,27	219,38
7,41	2,5177	37,65	14,562	164,83	231,08
8,15	2,5874	39,28	16,223	169,39	242,88
8,90	2,6500	39,47	16,353	173,96	255,58
9,65	2,6352	41,86	18,363	178,53	269,47
10,42	2,7562	43,84	19,825	183,10	283,91
11,18	2,7152	44,39	20,412	187,68	299,51
11,95	2,9578	46,93	22,453	192,25	313,23
12,71	3,0754	47,47	23,632	196,83	324,62
13,47	3,3077	48,69	24,523	197,65	324,52
14,30	3,5507	50,03	25,163	201,42	335,63
15,07	3,7565	52,60	27,363	203,33	339,14
15,89	3,9553	55,17	29,863	207,88	355,43
16,69	4,1545	57,59	31,463	212,42	371,04
17,49	4,4335	60,36	34,634	216,96	385,85
18,30	4,7143	62,97	36,263	221,51	400,89
19,4	5,2234	65,58	38,663	226,06	411,34
20,15	5,4354	68,21	40,763	230,58	424,73
21,08	5,8264	70,84	43,462	235,10	438,35
22,24	6,3532	73,48	46,634	239,61	449,63
22,75	6,5823	76,12	49,025	244,10	466,55
23,49	6,8652	78,76	51,437	248,57	479,33
23,90	7,1462	81,40	54,334	252,96	493,45
24,46	7,4532	84,04	57,734	257,35	503,24
25,15	7,6423	86,72	61,263	261,67	514,53
25,59	7,9523	89,37	64,963	265,94	526,50
26,14	8,1523	92,90	69,946	269,90	537,23
26,81	8,4521	97,31	76,089	274,63	555,46
27,26	8,6623	101,72	84,257	279,49	568,63
27,82	9,4231	115,06	111,68	283,88	579,63
28,45	9,3342	119,53	122,20	288,21	596,63
29,52	9,8534	124,01	131,54	292,53	608,82
30,09	10.234	128,51	141.54	296,86	624,63

Таблица 5. Экспериментальные значения молярной теплоемкости борида тулия TmB₅₀ C_p(T),Дж/моль/К.

T,K	C _p	T,K	C _p	T,K	C _p
2,23	1,8637	42,14	15,434	183,16	268,35
2,65	2,2513	44,66	17,786	187,74	281,92
3,29	2,5681	47,20	19,479	192,32	294,63
3,95	2,7297	49,77	22,142	196,91	308,34
4,71	2,7623	52,34	24,564	201,52	316,34
5,45	2,6611	54,92	27,368	206,12	327,53
6,21	2,4633	57,52	29,993	210,72	338,34
6,95	2,3199	60,12	32,347	215,31	351,63
7,69	2,1125	62,74	34,592	219,91	364,34
8,42	1,9459	65,36	36,950	224,53	373,63
9,16	1,7968	68,21	39,578	229,12	385,17
9,90	1,6200	70,69	42,184	233,67	396,34
10,64	1,4725	73,34	44,735	238,24	407,53
11,39	1,3796	75,98	47,645	242,84	419,41
12,12	1,3456	78,63	50,668	247,43	429,48
12,86	1,3675	81,29	54,076	252,01	439,20
13,66	1,2634	83,95	57,454	254,26	445,95
14,41	1,3625	86,61	61,567	259,43	456,90
15,15	1,4335	89,27	64,855	263,99	468,53
15,92	1,5518	92,85	68,935	268,53	478,74
16,70	1,6845	97,21	75,890	273,05	490,23
17,47	1,8565	101,63	83,662	277,52	502,71
18,25	2,1124	106,06	91,539	281,98	514,33
19,35	2,4763	110,51	100,59	286,46	525,12
20,98	3,1167	114,97	110,01	290,92	538,37
22,66	3,7813	119,45	119,03	295,39	549,34
24,36	4,4925	123,94	128,49	299,85	560,63
26,04	5,2866	128,47	138,20	304,09	570,64
27,74	6,0645	132,99	147,76		
29,44	6,9785	137,51	157,86		
29,67	7,0735	142,05	167,98		
31,53	8,1485	146,60	175,66		
32,19	8,5184	151,17	187,45		
34,04	9,7984	155,73	198,08		
34,66	10,115	160,28	209,65		
37,12	11,772	164,84	221,12		
39,61	13,374	169,42	232,04		

Таблица 6. Экспериментальные значения молярной теплоемкости борида иттербия YbB₅₀ C_p(T),Дж/моль/К.