
Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный университет имени академика И.Г. Петровского»

Тестовые задания по дисциплине «Информатика и современные информационные технологии»

Демонстративный вариант 1.

1. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути между пунктами В и К. Передвигаться можно только по указанным дорогам.

Totalia no Jacoumina Aop							
	П1	П2	П3	Π4	П5	Π6	Π7
П1		20					15
П2	20		10	5			20
П3		10			20	15	
Π4		5				10	
П5			20			10	
П6			15	10	10		
Π7	15	20					

2. Дан фрагмент электронной таблицы:

,	1	A	В	C	D
	1	???	???	1	5
	2	???	=A1+C1	???	=C1+D1

Определите наибольшее целое число, которое может быть записано в ячейке A1, чтобы построенная после выполнения вычислений диаграмма по значениям диапазона ячеек A2:D2 соответствовала рисунку? Известно, что все значения диапазона, по которым построена диаграмма, положительные.

- 3. Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 348 оканчивается на 20.
- 4. Решите уравнение $222_x + 4 = 1100_5$. Ответ запишите в троичной системе счисления.
- 5. Для кодирования некоторой последовательности, состоящей из букв A, Б, В, Г, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы A использовали кодовое слово 1, для буквы Б кодовое слово 001. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?

- 6. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 15 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза меньше и частотой дискретизации в 4 раза больше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б; пропускная способность канала связи с городом Б в 2 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?
- 7. Каждый сотрудник предприятия получает электронный пропуск, на котором записаны личный код сотрудника, код подразделения и некоторая дополнительная информация. Личный код состоит из 14 символов, каждый из которых может быть заглавной латинской буквой (используется 26 различных букв) или одной из цифр от 0 до 9. Для записи кода на пропуске отведено минимально возможное целое число байт. При этом используют посимвольное кодирование, все символы кодируют одинаковым минимально возможным количеством бит. Код подразделения состоит из 8 символов: на первых пяти позициях могут стоять латинские буквы от А до F, затем три десятичных цифры. Код подразделения записан на пропуске как двоичное число (используется посимвольное кодирование) и занимает минимально возможное целое число байт. Всего на пропуске хранится 30 байт данных. Сколько байт выделено для хранения дополнительных сведений об одном сотруднике? В ответе запишите только целое число количество байт.
- 8. В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» символ «&». В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет. Какое количество страниц (в тыс.) будет найдено по запросу

(01.03.02 & 02.03.02 & 38.03.05) / (01.03.02 & 02.03.02 & 44.03.04)?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Запрос	Найдено страниц (в тысячах)
01.03.02 & 02.03.02 & 38.03.05	1100
01.03.02 & 02.03.02 & 44.03.04	1300
01.03.02 & 02.03.02 & 38.03.05 &	1000
44.03.04	

- 9. Для узла с IP-адресом 111.81.208.27 адрес сети равен 111.81.192.0. Какое наибольшее количество адресов может быть в этой сети?
- 10. Логическая функция F задаётся выражением $x \wedge (\neg y \wedge z \wedge \neg w \vee y \wedge \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
0	1	0	1	1
0	1	1	0	1
1	1	0	1	1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

11. Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n. Например, $14 \& 5 = 1110_2 \& 0101_2 = 0100_2 = 4$. Для какого наименьшего натурального числа A формула

$$((x \& 156 \neq 0) \lor (x \& 436 \neq 0)) \rightarrow (x \& A > 0)$$

тождественно истинна, то есть принимает значение 1 при любом неотрицательном значении переменной x?

- 12. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
- 1. Строится двоичная запись числа N.
- 2. К полученной записи дописываются разряды. Если число четное, справа дописывается 10, если число нечетное слева дописывается 1 и справа 01.
- 3. Результат переводится в десятичную систему и выводится на экран. Пример. Дано число N=13. Алгоритм работает следующим образом:
- 1. Двоичная запись числа N: 1101.
- 2. Число нечетное, следовательно слева дописываем 1, справа 01 1 + 1101 + 01 = 1110101.
- 3. На экран выводится число 117.

В результате работы автомата на экране появилось число, большее 516. Для какого наименьшего значения N данная ситуация возможна?

13. Запишите число, которое будет напечатано в результате выполнения следующей программы.

ледующей программы.				
C++	Python	Паскаль		
# include <iostream></iostream>	s = 1	var s, n: integer;		
using namespace std;	n = 340	begin		
int main() {	while 3*s-2.5*n < 15:	s := 1;		
int $s = 1$, $n = 340$;	s = s + 2	n := 340;		
while $(3*s -2.5*n < 15)$	n = n - 4	while (3*s-2.5*n)<15		
{	print(n)	do		
s = s + 2;		begin		
n = n - 4;		s := s + 2;		
}		n := n - 4;		
cout << n << endl;		end;		
return 0;		writeln(n)		
}		end.		

14. Ниже записан рекурсивный алгоритм F.

C++	Python	Паскаль
void F(int n)	def F(n):	procedure F(n: integer);
{	print(n)	begin
$cout \ll n \ll endl;$	if n < 5:	writeln(n);
if $(n < 5)$ {	F(n+1)	if $n < 5$ then
F(n + 1);	F(n+3)	begin
F(n + 3);		F(n+1);
}		F(n+3)
}		end
		end

Чему равна сумма всех чисел, напечатанных на экране при выполнении вызова F(1)?

Имеется фрагмент алгоритма, записанный на алгоритмическом языке: 15.

```
m := 10
b := Извлечь(a, m)
нц для k от 4 до 5
 c := Извлечь(a, k)
 b := Cклеить(b, c)
нц для k от 1 до 3
```

c := Извлечь(a, k)

b := Cклеить(b, c)

ΚЦ

Здесь переменные a, b и c - строкового типа; переменные n, m, k – целые. В алгоритме используются следующие функции:

Извлечь(x,i) – возвращает і-й символ слева в строке х. Имеет строковый тип. Cклеить(x,y) – возвращает строку, в которой записаны подряд сначала все символы строки х, а затем все символы строки у. Имеет строковый тип.

Значения строк записываются В кавычках (одинарных), например х='абитуриент'.

Какое значение примет переменная **b** после выполнения этого фрагмента алгоритма,

если переменная а имела значение 'ИНФОРМАТИКА'?

Исполнитель преобразует число, записанное на экране.

У исполнителя есть команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Прибавить 3
- 3. Умножить на 3.

Первая команда увеличивает число на экране на 1, вторая — на 3, третья увеличивает число в 3 раза.

Сколько существует программ, для которых при исходном числе 7 результатом является число 20 и при этом траектория содержит число 14 и не содержит 15?

17. Значения элементов двумерного массива А были равны 0. Затем значения некоторых элементов были изменены (см. представленный фрагмент программы). Какой элемент массива будет иметь в результате максимальное значение?

Си++	Python	Паскаль
n=0;	n = 0	n:=0;
for $(i = 1; i \le 5;$	for i in range(1, 6):	for i:=1 to 5 do
i++) {	for j in range(1,	for j:=1 to 6-i do
for $(j = 1; j \le 6-$	7-i):	begin
i; j++) {	n += 1	n := n + 1;
n += 1;	A[i][j] = n	A[i,j] := n;
A[i][j] = n;		end;
}		
}		

- 1) A[1,1]
- 2) A[1,5]
- 3) A[5,1]
- 4) A[5,5]
- 18. Напишите в ответе число, равное количеству различных значений входной переменной k, при которых приведённая ниже программа выводит тот же ответ, что и при входном значении k=16. Значение k=16 также включается в подсчёт различных значений k.

С++	Python	Паскаль
#include <iostream></iostream>	def f(n):	var k, i : longint;
using namespace std;	return n*n*n	function f(n: longint):
int f(int n) {	k = int(input())	longint;
return n* n * n;	i = 1	begin
}	while $f(i) < k$:	f := n*n*n;
int main() {	i += 1	end;
int k , $i = 1$;	if $f(i)-k \le k-f(i-1)$:	begin
cin >> k;	print(i)	readln(k);
while(f(i) < k)	else:	i := 1;
i++;	print(i-1)	while $f(i) < k do$
if $(f(i) - k \le k - f(i - 1))$		i:= i+1;
cout << i;		if $f(i)-k \le k-f(i-1)$ then
else cout << i - 1;		writeln(i)
return 0;		else writeln(i-1);
}		end.

- 19. Напишите программу, которая выводит на экран максимальную цифру числа и его сумму. Укажите язык программирования и его версию.
- 20. Дан массив, содержащий 2024 неотрицательных целых чисел, не превышающих 1000. Опишите на одном из языков программирования алгоритм, позволяющий найти и вывести сумму всех содержащихся в массиве

трехзначных чисел, десятичная запись которых оканчивается на 77, но не на 7. Если подходящих чисел в массиве нет, программа должна вывести число -1.